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A new model for nonlinear wind waves. Part 1. 
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Anew interpretation of a nonlinear wind-wave system is proposed. It is proposed that, 
for steady wind blowing in one direction, a nonlinear wind-wave system can be 
completely characterized, to a good first approximation, by a single nonlinear wave 
train having a carrier frequency equal to that of the dominant frequency in the 
wind-wave spectrum. In  this model, the spectral components of the wind-wave 
system are not considered a random collection of free waves, each obeying the usual 
dispersion relation, but are effectively non-dispersive bound-wave components of a 
single dominant wave, travelling at the speed of the dominant wave. To first order, the 
nonlinear wind-wave system is considered to be a coherent bound-wave system which 
propagates energy only at the group velocity of the dominant wave and is governed 
by nonlinear self-interactions of the type found in amplitude-modulated wave trains. 
The role of short free waves in the system is discussed. Results of laboratory experi- 
ments performed by the authors and by Ramamonjiarisoa & Coantic (1 976) are found 
to provide evidence supporting the applicability of such a model to wind waves under 
virtually all laboratory conditions. Preliminary consideration is given to possible 
application of the model to oceanic wind waves and conditions are identified for which 
the model would be most likely to apply. 

1. Introduction 
During the past two decades, considerable effort has been devoted to the study of 

nonlinear effects on wind-driven ocean waves. The first nonlinear correction to the 
linear spectrum was calculated by Tick (1959). Since then, the resonant quartet 
interaction theoryofPhillips (1960,196l)hasbeenusedbyHasselmann (1962,1963a,b) 
and Hasselmann et al. (1973) to estimate the nonlinear energy transfer between 
spectral wave components; this line of investigation has recently been pursued further 
by Willebrand (1975), West, Thomson & Watson (1974) and Longuet-Higgins (1976). 

All these approaches are based upon two assumptions: (i) to a first approximation, 
the wave spectrum is made up of many linear, random, free wave components and 
possesses Gaussian or near-Gaussian statistics, and (ii) nonlinear interactions are 
effective only among wave components which are resonant based on the linear dis- 
persion relation for free waves. In  short, the effects of nonlinearity are considered to 
be weak relative to the effects of randomness. 

In  this paper, we suggest a model for the characterization of a wind-driven wave 
field in which the effects of nonlinearity dominate the effects of randomness. We 
propose that such a nonlinear wind-wave system is well characterized, to a first 
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approximation, by a single coherent nonlinear wave train, with the effect of random- 
ness entering only at the next order of approximation. We have been led to consider 
this model by examination of results obtained during our recent theoretical and 
experimental investigations of nonlinear wave pulses and wave trains (Yuen & Lake 
1975; Lake, Yuen, Rungaldier & Ferguson 1977), and by results of additional 
laboratory experiments using wind waves and wave trains (Lake & Yuen 1976; 
Yuen & Lake 1976), examples of which we report here. We find that, under con- 
ditions of fixed fetch and steady wind blowing in one direction, essentially all of the 
energy in the resulting nonlinear wind-wave system is contained in the bound-wave 
components of a single dominant wave. To a good approximation, the wind-wave 
system at a given fetch can be characterized by a single dominant frequency and 
propagates energy at a single group velocity corresponding to that dominant frequency. 
The individual components in the wind-wave spectrum do not propagate as free waves 
and do not obey the usual dispersion relation. We are therefore proposing that the 
behaviour of nonlinearity-dominated wind waves differs significantly from that of 
the near-linear waves studied in prior treatments of wind waves, because in the latter 
case all spectral components are considered to be free waves, i.e. they are assumed to 
obey the dispersion relation. 

The following text provides a brief description of the relevant properties of non- 
linear wave trains, the laboratory experimental evidence for our interpretation of the 
properties of nonlinear wind-driven waves, and a list of properties associated with 
nonlinearity-dominated wind waves. Part 2 of this study (Yuen & Lake 1979) deals 
with the application of this physical model to provide a first-order theoretical 
description of nonlinear wind waves. 

2. Properties of nonlinear wave trains 
It is well known that a Stokes wave train, i.e. a train of waves with a single funda- 

mental frequency and finite, but uniform, amplitude, has a power spectrum containing 
a dominant component a t  the primary or carrier frequency and a series of less energetic 
components at the frequencies of the harmonics of the carrier. It is also well known 
that the components are bound-wave components, in that the energy of the system 
is propagated at a single group velocity. These bound-wave characteristics have 
usually been considered to be limited to waves which have only harmonics in the 
spectrum and which propagate without change of form. Waves with a broad con- 
tinuous spectrum, such as that in figure 1, would not therefore be expected to have 
bound-wave or non-dispersive characteristics. However, it has been found that a 
Stokes wave train is unstable to modulational perturbations (Zakharov 1967 ; 
Benjamin & Feir 1967) and that the long-time evolution of such a nonlinear wave 
train leads to strongly modulated wave forms without a loss of coherence (Lake, 
Yuen, Rungaldier & Ferguson 1977). Furthermore, it has been shown (Lake, Yuen, 
Rungaldier & Ferguson 1977) that the evolution of a one-dimensional, nonlinear, 
deep-water wave train is well described quantitatively by the nonlinear Schrodinger 
equation: 
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FIQURE 1.  Example of power spectrum obtained from amplitude measwementa of wind- 
generated waves. Power spectral density (PSD) in V2/Hz cc (amplitude)a/Hz plotted aga,inst 
frequency. Wind speed IA, = 36 ft/s; fetch x = 30 ft. 

This equation, to be satisfied by the complex envelope A of a wave train with a carrier 
frequency wo (and carrier wavenumber ko), was first derived by Zakharov (1968). 
The relationship of A to the free surface ~ ( x ,  t )  is given by 

q(x,  t )  = a(x, t )  cos [ (kox-oo t )  +B(x, t ) ] ,  (2) 

where A(x, t )  = a(x, t )  exp [iB(x, t ) ] .  (3) 
In  this notation, A(x,  t ) ,  and hence a@, t )  and 6(x ,  t ) ,  are all slowly varying functions 
of x and t ;  a(x,t) is real and non-negative, representing the wave envelope of the 
rapidly-varying carrier wave; and the x and t derivatives of B give the perturbation 
to the wavenumber and frequency of the carrier wave. According to the set of equations 
(1)-(3), to leading order, the wave energy is propagated at a constant velocity 
Coo = wo/2k,. Similarly, the leading-order propagation speed of the crests is Co = wo/k0. 
These results are hardly surprising for a weakly nonlinear, nearly-uniform wave train. 

2-a 
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FrGURE 2. Spectrum of amplitude-mcdulated nonlinear wave train, 
carrier frequency = 2.5 Hz, initial wave steepness ka = 0.24. 

Investigation of the long-time evolution of such nonlinear wave trains (Lake, Yuen, 
Rungaldier & Ferguson 1977), however, also shows that the nonlinear Schrodinger 
equation provides a valid description of wave-train properties a t  stages of evolution 
where the wave trains are far from uniform. In  fact, good quantitative agreement waa 
obtained for cases where the wave trains undergo modulations strong enough to 
cause local wave breaking. At such strongly-modulated stages of evolution, the power 
spectra (both experimental and numerical) contain many components in addition to 
the primary wave and its harmonics. Since the wave train still obeys (1)-(3)) these 
components are not free waves and do not satisfy the free-wave dispersion relation, 
but are merely Fourier components needed to describe the complicated shapes of the 
individual waves as well as of their envelope. To leading order the individual com- 
ponents still travel at the single speed C, = uo/k,,  the phase speed of the carrier wave, 
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FIGURE 3. Measurements of the propagation of a nonlinear wave pulse (with a spectrum similar 
to that in figure 2) showing energy propagation at a single speed. (a) z = 5ft; (b)  z = loft; (c) 
x = 15ft; (d )  x = 20ft; (e) 2 = 25ft; (f) z = 30ft. 
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and the energy (or envelope) propagates a t  the corresponding carrier wave group 
speed Coo = wo/2k0. The spectrum shown in figure 2 is an example of the spectrum of 
such a wave train during a strongly-modulated stage in its evolution. Although the 
spectrum consists of discrete lines, it covers a relatively broad frequency range, 
contains many components that are not harmonics of the carrier wave, and in fact the 
existence of a coherent carrier wave form would not be evident solely from inspection 
of the spectrum. Nevertheless, the wave system which produced the spectrum in 
figure 2 is one having a coherent carrier wave, bound-wave components, and a single 
energy propagation speed, although it does not propagate without change of form. 
Another example of such a wave system can be seen in measurements of the pro- 
pagation of nonlinear wave pulses, such as those displayed in figure 3 (Yuen & Lake 
1975).  The spectra of such pulses contain components over a relatively broad range of 
frequencies and are very similar to the spectrum shown in figure 2, yet it is clearly 
evident that the wave system is effectively non-dispersive and that wave energy is 
propagated at a single speed. 

These and other examples from our previous investigations of wave trains and 
pulses provide evidence that nonlinear self-interactions can produce coherent bound- 
wave systems which have relatively broad spectra. Inspection of such examples 
forces one to conclude that propagation of energy at  a single speed by a coherent 
carrier wave in a bound-wave system is not confined to simple wave systems composed 
only of harmonics and propagating without change of form, and that the existence 
of a broad continuous wave spectrum of the type shown in figure 1 does not preclude 
the possibility that the measured wind waves are bound waves with essentially one 
energy propagation speed. 

3. Properties of nonlinear wind waves 
3.1. Laboratory investigations 

A typical power spectrum obtained from wave amplitude measurements in awind-wave 
tank is shown in figure 1.  Such spectra provide useful representations of the averaged 
Fourier decomposition of wind-wave measurements, but unless they are used together 
with phase information, which is required in order to determine the degree of coherence 
of the wave forms or the nature of the coupling between wave components, they 
provide a description of the wave system that is incomplete a t  best and may even be 
misleading. There is, for example, no information in the spectrum which provides a 
clear indication as to whether the wave components are bound or free. 

Another aspect of wind-wave characteristics, which is very familiar to experi- 
mentalists working with wind-wave tanks, is the time history of the wave amplitude 
a t  a fixed fetch (e.g. figure 4). This is the raw form of the data that is most commonly 
obtained in wind-wave measurements. The appearance of a dominant wave scale in 
such measurements has for many years been relied upon by experimentalists in 
setting up wind-wave conditions, since a count of the peaks or zero-crossings of the 
‘dominant wave‘ in the measured wave form provides a good estimate of the frequency 
a t  which the peak of the wind-wave spectrum will appear when the data are later 
reduced to spectral form. The implications, however, of the appearance of the 
‘dominant wave’ and its observed coherence for interpretations of wind-wave hydro- 
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FIUWRE 4. Wind-wave amplitude records, each showing evidence of a single carrier frequency 
(in a wave-counting or zero-crossing sense) a t  the frequency of the peak in the corresponding 
spectrum. Arrows on wave forms indicate WBV~EI counted. (a) uw = 30 ft/s; spectral peak at  
2-8Hz; wave counting: 

(a) u, = 20ft/s; spectral peak at  3.4Hz; wave counting: 

dynamic characteristics have not been fully exploited. It appeared to us, for example, 
that the 'dominant wave' might be, in a very real sense, the only true wave in the 
wind-wave system at that fetch, and that the highly coherent wind-wave system (as 
seenin the measured wave amplitude records) was actually morelike a single amplitude- 
modulated nonlinear wave train than a superposition of many relatively independent 
wave components. We therefore tested this proposition experimentally by measuring, 
analysing and comparing particular characteristics of both nonlinear wave trains and 
wind-driven waves. 

The experiments were performed in a 3 x 3 x 43ft water tank. A programmable 
surface wave maker is located a t  one end of the tank and a wave-absorbing beach at  
the opposite end. An open-circuit wind tunnel (3 x 3 ft cross-section) extends over the 
upper water surface along the 40ft long working section of the facility. The inlet 
contraction section of the wind tunnel is located over the wave maker end of the tank, 
and the diffuser and fan are located downwind of the wave absorber end of the wave 
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tank. The wind tunnel is capable of producing steady wind speed conditions in the 
facility for a range of wind speeds from 5 to 40 ft/s. The entire wind-wave generation 
system (inlet, test section, diffuser, fan and motor drive) is mounted directly on the 
laboratory floor and not on the wave tank itself. The wave tank and wind-wave 
system are extremely well isolated from one another, the only points of contact between 
the two being flexible rubber seals which prove the air-seal between the two structures. 
In addition, the programmable surface wave maker system is mounted on the wind 
tunnel structure and is therefore also mechanically isolated from the wave tank 
structure. In  the experiments, the evolution of mechanically-generated wave trains and 
wind-generated wares was measured using capacitance-type, single element, wave 
amplitude gauges located singly and in pairs aligned in the direction of wave propaga- 
tion at stations 5, 10, 15, 20, 25 and 30 f t  downstream of the wave maker. The gauge 
outputs were linearly proportional to wave amplitude, with sensitivities typically 
3 T/in. over a 2 in. range. Additional details regarding the facilities and procedures 
used in these experiments may be found in Lewis, Lake & KO (1974); Yuen & Lake 
(1975); Lake & Yuen (1976); and Lee (1977). 

Frequency of dominant wave. In  order to investigate the degree of coherence of the 
dominant wave in a wind-wave system at fixed fetch, we began an examination of 
wave amplitude records to identify the extent to which the dominant wave can be 
considered to be a carrier wave of essentially constant frequency. Since visual in- 
spection of amplitude records from wind-wave measurements indicates that the 
dominant wave has a highly regular frequency or period, we have used analog and 
digital processing to determine quantitatively the range of variation of the dominant 
wave period in wind-wave records obtained under steady wind conditions a t  a fixed 
fetch over time periods comparable to those used in obtaining wave spectra (from 
10 to 20 min real time). For the analog processing, a Vidar frequency-to-voltage 
converter is used to obtain a voltage signal which is linearly proportional to the 
dominant frequency (in a zero-crossing sense) of wind-wave amplitude records which 
are fed into the device from tape recordings of wave measurements at  eight times the 
real-time recording speed. The device determines the frequency of zero-crossings in 
the records and converts the result to a voltage that is proportional to the zero- 
crossing frequency but independent of wave shape (as long as each signal ‘crest’ or 
‘trough’ exceeds a minimum level that is a few per cent of the peak-to-peak range of 
the signal). The response time of the device is such that, under the conditions used, 
the output voltage has an equivalent response time, in dominant-wave periods, of 
about 10 cycles. This means that the operation tends to average out dominant-wave 
frequency variations that occur on time scales shorter than about 10 wave periods. 
The results of such processing (as in figure 5, for example) indicate that for wind-wave 
records with a dominant-wave frequency near 2-8 Hz, the dominant-wave frequency 
is constant within about & 0.30 Hz for the length of the record. Note that this range 
of variation is considerably narrower than the range of components apparent in the 
spectrum. 

In order to obtain a more precisely defined measure of the variation of the frequency 
or period of the dominant wave, the wave records were digitized and processed by 
computer. The digitization rate is 250 samples/s for a resolution, in period of the zero- 
crossings, of 0.004 s. Effects of any long-term d.c. signal drift are eliminated by per- 
forming a 4 s  sliding mean removal prior to calculation of zero-crossing periods. A 
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FIGURE 5. Example of analog processing for zero -crossing frequency variations in wind- wave 
amplitude records. (a)  Wave amplitude record; ( b )  zero-crossing frequency signal, variation over 
approximately 476 cycles; (c )  wave amplitude record; ( d )  zero-crossing frequency signal, variation 
over approximately 60 cycles. 
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FIQURE 6. (a) Difltribution of frequencies obtained from zero-crossing periods of individual 
wavea in the measured wave record of a strongly-modulated nonlinear wave train. z = 30ft; 
10min real-time record. Spectrum and wave form are shown in figure 8. (b )  Distribution of 
frequencies obtained from zero-crossing periods of individual waves in a measured wind-wave 
record. u, = 35ft/s; z = 30 ft; 10 min real-time record. Spectrum is shown in figure 1 and wave 
form in figure 9. 

zero-crossing is defined as having occurred when a cycle occurs in which the peak and 
trough exceed a specified minimum level, given as a function of the maximum wave 
height in the record, so that the periods of waves carrying a specified fraction of the 
total wave energy can be examined. Thus far, the program has been used to calculate 
histograms of the periods of zero-crossings in wind-wave records and in modulated 
wave-train records. 

The cases which have been run (as for example in figure 6) indicate that the periods 
measured for the waves which carry approximately 98 yo of the energy in a 2.6 Hz 
dominant frequency wind-wave spectrum have a range that is greater, by only 8 

fraction of a hertz, than the corresponding range measured for a 2.5Hz strongly 
modulated wave train. A greater percentage of the wave-train periods is concentrated 
at the period corresponding to its dominant frequency than in the wind-wave case, 
however, so that while the overall range of variation of dominant wind-wave periods 
is not significantly greater than the range of variation of zero-crossing periods pro- 
duced by the nonlinearity-induced modulation of a coherent nonlinear wave train, 
the latter has a slightly more constant carrier frequency. Again, the range of variation 
of dominant wave frequency obtained from zero-crossing periods is considerably 
narrower than the range of components apparent in the spectrum (figure 1) .  

Phase speeds. In  addition to finding that coherent bound-wave systems (nonlinear 
wave trains) can have broad spectra and that wind waves have dominant waves with 
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FIUURE 7. Measured phase speeds of frequency components of a linear, multi-frequency wave train. 
(a) Spectrum. (b)  Phasespeed; -, dispersion relation; x ,experiment. (c) Waveamplitude record. 

a relatively high degree of coherence, we have also performed experiments to test 
directly the proposition that the dominant wind wave is the only true wave in the 
system in the sense that the other significant components in the spectrum are bound- 
wave components of the dominant wave. This was done by obtaining measurements 
of the phase speed of individual frequency components in the wave spectrum. Wave 
amplitudes were measured using two probes separated by a short distance (typically 
3 in.) in the direction of wave propagation. The output of each probe was then narrow- 
bandpass filtered (high pass and low pass set at the same value, both filters having 
48 dB/octave cut-offs) and then the two outputs were cross-correlated. The time to 
maximum cross-correlation and the probe separation were then used to obtain the 
phase speed of the bandpassed frequency component. This operation was performed 
for measurements of wave trains with multiple frequency components and infinite- 
simal amplitudes (linear waves), for nonlinear wave trains (i.e. ka 2 0.1) at various 
stages of modulation, and for wind-driven waves at various wind speeds. 

For the case of linear wave trains with multiple components we found that each 
component travels at its own phase speed, as given by its frequency and the dispersion 
relation (figure 7). This result demonstrates that the measurement technique does 
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FIGURE 8. Measured phase speeds of frequency components in a strongly-modulated nonlinear 
wave train. (a) Spectrum. (b) Phase speed; ---, dispersion relation; 0, experiment. (c) Wave 
amplitude record. 

reproduce the expected result that  the linear wave trains are composed of free-wave 
components. For the case of nonlinear wave trains, we found that all components (not 
simply the harmonics) at frequencies higher than the frequency of the primary or 
carrier wave travel a t  approximately a single phase speed - that of the primary 
frequency component (figure 8). I n  other words, we found that the speeds of the 
individual components did not obey the usual dispersion relation and that the com- 
ponents are in fact bound-wave components of the dominant wave (primary com- 
ponent), as expected on the basis of the discussion of nonlinear wave trains in $2.  
For the case of wind-driven waves, we found that all components having 
frequencies higher than the frequency of the dominant wave (again, not simply the 
harmonics) travel at a single phase speed - that  of the dominant wave (in this instance 
equal to the phase speed calculated from the dispersion relation plus a wind-drift 
contribution, figure 9). I n  other words, the speeds of the individual components do 
not obey the usual dispersion relation and the components are in fact bound-wave 
components of the dominant wind wave. 

Our results are not the only measurements of the phase speed of wind-wave com- 
ponents which show this lack of dependence of phase speed on frequency. Wind-wave 
measurements of this type were first reported by Ramamonjiarisoa & Coantic at the 
Seattle meeting of the American Meteorological Society in March 1976. They have 
presented data taken a t  two wind speeds [also published in French (Ramamonjiarisoa 
& Coantic 1976)], which show that all components above the dominant frequency 
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propagate at the phase speed of the dominant wave and they point out that the 
components seem to be acting as though they are harmonics of the wave even though 
they are not. We believe that such results, however, when taken together with the 
rest of our results on nonlinear wave trains and wind waves,? can be used to support 
the nonlinear wind-wave model we are proposing. 

Group velocity measurements. According to our proposed interpretation of nonlinear 
wind waves, all of the energy in such a wind-driven wave system should propagate 
a t  a single speed - the group velocity of the dominant wave. We have also measured 
group velocities in wind-driven wave systems in order to test directly this aspect of 
the wind-wave model. Measurements of the group velocity can be obtained by 
processing the data from the probe pairs that were used to obtain phase speed measure- 
ments to the frequency components of wave trains and wind waves. This was done 
by first squaring (rectification can also be used) the output of each wave amplitude 
gauge and then low-pass filtering the result to produce a signal that is the square of 
the envelope of the measured waves. When the envelope signals from the two gauges 
are cross-correlated, the resultant time to maximum correlation and the separation 
distance provide a measure of the speed of wave amplitude modulations, or the group 
velocity. The results for nonlinear wave trains correspond to the group velocity of the 
primary frequency component, as one would expect. The results for the case of wind 

t For example, the results of our wave-train investigations which show that a single nonlinear 
wave train can have a broad spectrum of components, and that all the spectral components, not 
simply those that are harmonics of the carrier frequency, can exhibit bound-wave properties. 
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(ft/s) (ft/s) (Hz) (ft/s) (ft/s) (ft/s) (ft/s) (ft/s) 
20 1.12 3.2 1.95 1-60 0.35 0.77 0-80 
25 1.26 2.9 2.17 1-77 0.40 0.86 0.885 
36 1.56 2.6 2.48 1-97 0-51 1.05 0-985 

TABLE 1. Examples of comparison of results of measured wind-wave group velocities and group 
velocities calculated from dominant wave frequency for three wind speeds at fixed fetch. 

waves are in agreement with the group velocity of the dominant wave in each case 
when the wind-drift speed, as determined from the difference between the measured 
phase speed of the bound-wai-e system and the phase speed calculated from the 
dispersion relation using the frequency of the dominant wave, is taken into account 
(table 1) .  These results confirm that the energy in the wind-wave system is trans- 
ported a t  the group velocity of the dominant wave, as would be expected from our 
interpretation of wind waves as a nonlinear bound-wave system characterized by 
a single dominant-wave frequency. 

Evolution of dominant waves. The wind-wave characteristics which have been 
discussed so far are characteristics which apply a t  a fixed stage, i.e. at fixed fetch or at  
fixed duration, in the evolution of a one-directional wind-wave system under steady 
wind. We believe, however, that our proposed use of a modulating nonlinear wave 
train as a basis for a first-order model of nonlinear wind waves also addresses the 
freqnency/n.avenumber evolution aspect of the wind-wave problem. In particular, 
we have observed and measured a phenomenon of evolving nonlinear wave trains 
(even without wind effects) which we believe is highly relevant to frequency/wave- 
number evolution in nonlinear wind-wave systems. The occurrence of this phenomenon 
was first reported in Lake, Yuen, Rungaldier & Ferguson (1977). That report is 
reviewed briefly, and expanded upon somewhat, in the following because we believe 
the phenomenon we have observed is a truly remarkable result of nonlinear self- 
interaction in a deep-water wave train, one not predicted by any existing theory 
for wave-train evolution, and one which is fundamental to frequency/wavenumber 
evolution in nonlinear wind waves. 

In  our investigations of nonlinear wave-train evolution, we found that a modulating 
nonlinear wave train (without wind) will undergo a self-induced shift to a new, lower, 
carrier frequency whenever further growth of the modulation would require that some 
waves exceed a maximum realizable steepness. We concluded that the occurrence of 
the self-induced frequency shift was associated with a steepness limitation for deep- 
water waves because we observed many cases where wave trains evolved through 
modulation-demodulation recurrence cycles without a change of carrier fre- 
quency, as well as many cases where the wave trains demodulated to new lower carrier 
frequencies, and the only distinction between the two types of cases which was 
consistently observed was associated with wave steepness. Frequency changes 
occurred when the waves in their unmodulated state were already sufficiently steep 
(e.g. ka 2 0.3) that the amplifications required as they passed through the most 
amplified portion of the wave envelope during the highly modulated state would 
have required that they attained an unrealizable wave steepness had their wavelength 
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remained fixed. Another admittedly qualitative way of describing what is observed 
in the wave-form records when this frequency/wavenumber decrease occurs is to say 
that the modulation becomes so large that a wave crest in each modulation period 
appears to be reduced to zero amplitude and ‘lost’ to the wave train as it evolves 
further and demodulates. Examples of such frequency/wavenumber changes as they 
appear in wave forms and spectra of amplitude measurements at various stages of 
wave-train evolution are shown in figures 5 and 6 of Lake, Yuen, Rungaldier & 
Ferguson (1977) and in figure 10 of this paper. The wave records in figure 10 were 
made at  wave-tank locations which were concentrated primarily in the region where 
the change in carrier-wave frequency was occurring. The measurements show that as 
it propagated, the wave train evolved from a weakly modulated condition with a 
carrier frequency fl = 3-25 Hz and modulation frequency 

Af = 8fl = (0.2) (3 .25H~)  = 0*65Hz, 

through a strongly-modulated state and a frequency change, to a nearly demodulated 
condition with a new carrier frequency of fi = fl-8fl = fl-Af = 2-60Hz. As 
previously reported, the magnitude of the change, if it occurs, is known from the 
initial conditions fi and ka (since 8 = ka for a Benjamin-Feir modulation instability), 
and the new carrier frequency is simply the component which was originally the lower 
of the pair of sideband frequency components which represented the amplitude 
modulation of the initial wave train. To the extent that average values of ka and the 
dominant frequency of modulations in wind waves can be identified, the magnitude 
of such reductions of dominant wave frequency in wind-wave systems should also be 
predictable. 

While the measured wave forms and spectra provide evidence that is highly sug- 
gestive of a true changeover of the wave train from a system at one carrier frequency 
to a system a t  another lower frequency, a much more demanding test of whether such 
a changeover has truly occurred is possible because, if it is real, the change of carrier 
frequency corresponds to measurable changes in phase velocity. In figure 11 the 
results of measurements of wave-train carrier frequency (obtained from autocorrela- 
tions of wave amplitude measurements) and wave-train phase speed (obtained from 
cross-correlations of wave amplitude measurements using two probes aligned in the 
direction of wave propagation) are shown. The measurements of each quantity are 
shown as points, and the lines are the results obtained for each quantity from the 
measured values of the other quantity using the dispersion relation. The results 
provide solid evidence that the self-induced change of carrier frequency is real, and 
indicate that the wave-train frequency and speed satisfy the dispersion relation 
during, as well as after, the change of carrier frequency. 

We believe that this shift to lower sideband frequency is the primary mechanism 
by which nonlinear wind waves shift to lower frequencies. The shift to lower frequencies 
is therefore a purely hydrodynamic phenomenon which can also occur in wave trains 
in the absence of wind if the wave trains become locally ‘over-modulated’ as they 
evolve. To first order, therefore, the role of the wind in the evolution of such nonlinear 
wind waves can be considered as simply a continuing source of energy to the locally 
dominant wave, which then regularly approaches limiting steepness, inducing the 
frequency shift mechanism on a continuing basis. 

One implication of such a model for the local properties and the evolution of non- 
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FIGURE 10. Wave-form measurements G f  a nonlinear wave train during a self-induced change of 
carrier frequency. ( a )  fi = 3.25Hz, 6 = 0.2, x = 5ft; ( b )  x = 12ft; (c) x = 15ft; ( d )  x = 17ft; 
(e) x = 18ft; (f) z= 20ft; (g)fz=fi-Sfl= 2.60Hz;x= 30ft. Note that althoughtheoutput ofevery 
gauge was linearly proportional to wave amplitude, each gauge had a slightly different sensitivity. 
As a result, the oscillograph record of the output voltage from any given probe is an accurate 
representation of the wave form of the w7ater waves measured by that probe, but the absolute 
magnitudes of the wave forms shown in oscillograph records recorded by different probes cannot 
be used to compare actual wave amplitudea at different measurement stations unless differences 
in probe sensitivities are taken into mcount. The series of oscillograph records used in this figure are 
therefore true representations of the wave-form changes which occur as the wave train evolves, 
but, should not be used to compare wave amplitudw at different measurement stations. 
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FIQURE 11. Measurement of carrier frequency and phase speed of a nonlinear wave train 
during a self-induced change of carrier frequency. Note also the two open data points (at the 5 
and 30ft stations), which are phase speeds obtained by doubling values of group velocities 
obtained from cross-correlations of two-point wave envelope memurements.f, = 2.5 Hz, S = 0.1, 
fa = fl-Sfl = 2.25 Hz. 
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FIQURE 12. Measured growth of wind-wave spectral components with fetch (from Sutherland 
1968) and maximum levels obtained using nonlinear wind-wave model with &i = constant. 
Solidlinee connect experimental data for each frequency. A, 2Hz; 0 , 3 H z ;  0, 4Hz; x , 5Hz. 
Dashed line is the peak frequency shift prediction obtained from the nonlinear wind-wave model. 
It was obtained by normalizing to obtain agreement with the data for 5 Hz and it  then passes 
through the maximum energy density level of each frequency component, indicating agreement 
between the predicted and meaeured evolution of p k  frequency energy density levels. 
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linear wind waves is that an actively growing wind-wave system under conditions of 
steady wind regularly approaches a limiting wave steepness, so that on the average 
the wave steepness, or $a, should be constant as the waves evolve with fetch or duration 
for fixed wind speed (at least for u,/C $ 1) .  Measurements of the average steepness 
of dominant waves under laboratory (Lake & Rungaldier 1977) and field conditions 
(as in $3.2 below) provide evidence in support of such an assumption. Furthermore, the 
constant mean slope concept and the values obtained from data for EZZ are consistent 
with our assumption that at each fetch the wave field is to first order a single nonlinear 
modulated wave train. Note, for example, that this means that the amplitude or 
spectral density of any given frequency component in an evolving wave system will 
attain its maximum level when that component is the dominant wind wave, and the 
relationship between the maximum levels of components and their frequencies is given 
by = constant. This aspect of the model is tested against laboratory measurements 
of the growth of wind-wave spectral components with fetch by Sutherland (1968) in 
figure 12, where the relationship between the measured maxima is found to be in 
good agreement with the relationship predicted by constant wave steepness arguments 
and the nonlinear wind-wave model.? 

Modulations of evolving dominant waves. According to our proposed model, the 
predominant physical properties of an actively growing wind-wave system can, at 
any stage of its evolution, be approximated to first order by the properties of a non- 
linear wave train having a carrier frequency at the frequency of the dominant wind 
wave. Another feature of the wind waves which therefore should be worthy of investi- 
gation according to the proposed wind-wave model is the character of the amplitude 
modulations of the wind waves, since the properties of wave trains can be SO well 
characterized in terms of their modulational properties and the evolution of their 
wave envelopes. The amplitude modulations of wind waves have apparently not often 
been examined in past investigations of wind-wave properties, but we believe they 
are a potential source of highly useful information on the basic properties of wind-wave 
systems. 

The modulations can be studied most easily by processing wave amplitude records 
to produce signals which correspond to the wave forms of the envelope of the wave 
amplitude, as described previously with regard to group velocity measurements. We 
have used this processing on wave amplitude records measured over a wide range of 
laboratory conditions of fetch and wind speed. For each combination of fetch and wind 
speed, we then analysed the wave envelope records to obtain histograms showing 
the distribution of zero-crossing frequencies using the digital technique described 
previously for obtaining zero-crossing frequency distributions of the dominant waves 
themselves. In  this case, however, the zero-crossing frequency distributions provide 
frequency information on the envelope records, i.e. on the modulation frequencies. In 
examining such histograms, we find that while there is more of a spread in the envelope 

f Since, on dimensional grounds, the maximum value of the spectral density of the wind 
waves should be proportional to a / f ,  where f is the frequency of the locally dominant wind wave, 
and f a  cc z, it follows from the constant wave steepness condition that the maximum value of 
the spectral density is C C ~ - ~ .  Although this is the well-known dependence of spectral density 
upon frequency obtained by Phillips (lWj8a) for an equilibrium spectral range, the result here 
describes a different phenomenon, namely the relationship between the magnitudes of successive 
spectral peaks in a series of spectra for evolving wind waves. 
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FIGURE 13. Modulation characteristics of wave trains and wind waves. Ratios of modulation 
frequency and dominant wave frequency plotted against average wave steepnass k. All data 
points are results obtained by processing amplitude meaaurements of wind waves for the indicated 
ranges of wind speed and fetch. The solid line is the wave-train result, the Benjamin-Feir most- 
unstable modulation, fmod/fdom = S = ka. loft < fetch < 30ft. u,: 0, 16ft/s; a, 20ft/s; A,  
25ft/s; 0 , 3 0 f t / s ;  0 ,35ft /s .  

frequency distributions than in the dominant-wave frequency distributions, there is 
also a well-defined, most probable modulation frequency in each case, as would be 
expected from the nonlinear wind-wave model. Furthermore, there is a direct relation- 
ship between dominant modulation frequency and carrier-wave frequency in non- 
linear wave trains (fmod/fcarrier = ko), and so it is of interest to examine the relative 
values of the dominant modulation frequency, the dominant wave frequency, and the 
average wave steepness in wind-wave measurements. An example of such a com- 
parison is shown in figure 13 for wind waves measured under laboratory conditions 
at wind speeds from 15 to 35ft/s and fetches from 10 to 30ft. The solid line is the 
predicted result for a nonlinear wave train and the data points are results from the 
wind-wave measurements. The data have considerable scatter and there is an indica- 
tion that the normalized modulation frequency in wind waves is somewhat lower than 
it would be for a wave train at  the same value of La. Nevertheless, we feel that the 
fact that a dominant modulation frequency can even be identified for wind waves, and 
the fact that its relationship to the dominant-wave frequency and the average wave 
steepness is generally consistent with expectations based on wave-train relationships, 
is highly supportive of our proposed wind-wave model. We feel also that in future 
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FIGURE 14. Ratios of harmonic-to-carrier amplitude from spectra plotted against average wave 
steepness k. All data points are results obtained by processing amplitude measurements of wind 
waves for the indicated ranges of wind speed and fetch. The solid line is the Stokes wave result. 
lof t  < fetch < 30ft. 10ft/s < u,, < 35ft/s. u,: 0, lOft/s; x ,  15ft/s; A, 20ft/s; n, %ft/S; 

i n  

0, 30 ft/s; v ,  35 ft/s. 

investigations of nonlinear wind waves, whether in the laboratory or in the field, much 
more emphasis should be placed on identification of the modulational properties of 
the waves and on their evolution in terms of wave envelopes. 

Unsteadiness of evolving dominant uwves. I n  making comparisons between wind-wave 
properties and those of modulating nonlinear wave trains, we have also examined 
spectra in order to  determine whether the relative spectral densities of particular 
frequency components are related in a way that is consistent with a wave-train model. 
We hare calculated the ratio of the spectral density a t  twice the dominant frequency 
and the spectral density a t  the dominant frequency from spectra of laboratory wind- 
wave measurements for a wide range of wind speeds and fetches. This ratio is of 
interest because in the most idealized case of a nonlinear deep-water wave, a Stokes 
wave, it is determined for constant bandwidth simply by the wave steepness as 

PSD,,/PSD, = ( a , / ~ ~ ) ~  = *(lea),, 
and because in the relatively high resolution spectra which are possible under 
laboratory conditions it is usually possible to identify a secondary peak in the 
spectrum a t  twice the dominant frequency. I n  the laboratory, where we already have 
good evidence that the wind waves are nonlinear in the sense of our proposed model, 
this examination of spectral levels against wave steepness is a test of whether a useful 
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relationship exists for nonlinear wind waves. As can be seen in figure 14, where the 
results are plotted, the laboratory wind-wave ratios fall very close to the straight line 
which identifies the simple Stokes relationship. Since the results indicate that the 
relationship between spectral levels of harmonics in nonlinear wind waves may be 
close to that for simple nonlinear Stokes waves, they provide more evidence for the 
wave-train model and they indicate further that where other data are limited but 
wave amplitude spectra are available, a crude consistency test for the importance of 
nonlinear effects might be possible by use of this spectral ratio (whether or not second- 
ary peaks can be resolved) to estimate average wave steepness ZZ. The indicated 
steepness should be greater than about 0.1 if significant nonlinear effects are to be 
expected. 

Despite the good agreement between the measured and the Stokes wave values of 
harmonic spectral levels in figure 14, however, it is important to note here that the com- 
parison cannot beinterpretedasindicating that wind waves arelikeStokeswavesinany- 
thing but the grossest average sense. First, as has been shown by Zakharov (1967) and 
by Benjamin & Feir (1 967)) a train of Stokes waves of even uniform amplitude is unstable 
to any infinitesimal perturbations within a range of frequency components centred 
around the carrier frequency. As a result of this instability, nonlinear wave trains on 
deep water become amplitude modulated, going through cycles of modulation and de- 
modulation as they evolve (Lake, Yuen, Rungaldier & Ferguson 1977). Perhaps the 
most pronounced characteristic of nonlinear deep-water waves, whether they are 
envelope pulses, continuous wave trains or wind waves, is that they are highly 
amplitude modulated and as a result are highly unsteady waves. This becomes 
obvious when one realizes that the individual waves in such systems propagate 
through the modulation envelopes at one-half their phase speed. Since modulation 
lengths are typically only a few carrier waves long (number of waves/modulation 
K 2/ka) ,  and the modulations often become very large, individual waves may typically 
change amplitude and steepness by a factor of two or more during the time it takes 
them to propagate only a few of their own wavelengths. Such waves are highly 
unsteady, their profiles are asymmetric [note the levels of successive troughs in 
figure 5 of Lake, Yuen, Rungaldier & Ferguson (1977) for example], their particle 
velocities are drastically different from those of steady waves at  the same steepness 
(Yuen 1977), their breaking characteristics are greatly altered (Yuen 1977; Lake 
& Rungaldier 1978), and their spectra contain many components which are not simply 
harmonics of the carrier (figures 1, 2, 4, and 8). Even the modulation envelopes them- 
selves are unsteady, evolving to an end-state that is (in the absence of dissipative 
effects) neither random nor steady but is instead a continuing series of Fermi-Pasta- 
Ulam recurrence cycles, as shown by Lake, Yuen, Rungaldier & Ferguson (1977). The 
differences between the individual waves in nonlinear deep-water wave trains and 
steady Stokes waves are therefore fundamental. For this reason we do not feel it is 
appropriate to use a steady-state Stokes wave description of individual wave pro- 
perties as a basis for modelling the characteristics and evolution of highly modulated 
and highly unsteady wave systems such as nonlinear wave trains and wind waves on 
deep water. The most useful model for the evolution and characteristics of such a 
system appears to be one which describes the system in terms of its envelope dynamics 
and therefore one based on the nonlinear Schrodinger equation. This appears parti- 
cularly promising since Lake, Yuen, Rungaldier & Ferguson (1 977) have found that the 
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FIGURE 16. Example of slope gauge measurement of wind waves, u, = 20 ft/s, x = 30 ft. (a) 
Slope; (b) integrated slope. [From Chang & Wagner (1976), linear vertical scales, the front faces 
of the waves are to the left of the wave crests in the integrated slope traces.] 

evolution of the envelope is well described by that equation with an added dissipative 
term even when waves become so steep that they break, and investigations by 
Alber & Saffman (1977) and by Crawford, Saffman & Yuen (1977) indicate that the 
effects of randomness in such systems can be taken into account using the nonlinear 
Schrodinger equation as a starting point. 

The role of free waves. Although our model for nonlinear wind waves assumes that 
all of the energy in the wind-wave system is carried by the bound-wave components 
of a single dominant wave, we are not proposing that there are no free waves (i.e. real 
waves that satisfy the dispersion relation and are not bound-wave components of the 
dominant wave) in such a wind-wave system. We do propose, however, that the free 
waves in the system are primarily short waves which exist on the surface of the 
dominant wave and contain a negligible portion of the total wind-wave energy. Free 
waves of this type, although they would tend to dissipate rapidly, can be expected to 
exist along the surface of the dominant wave because of continuous local-generation 
by wind action, as well as by capillary generation and breaking associated with steep 
gravity waves. Because they contain a negligible portion of the energy in the wind- 
wave system and are short wavelength (high frequency) waves, they are difficult to 
resolve in most wave amplitude records. I n  fact, it appears quite possible, in view of 
the limitations of typical wave amplitude gauges for measurement of waves with very 
small amplitudes and very short length scales [for example, waves with wavelengths 
< 5 cm using laboratory-type capacitance gauges (Sturm & Sorrel1 1973)], that the 
high frequency content of wind-wave measurements made using such gauges is almost 
entirely associated with the high frequency components of the dominant-wave shape. 
I n  other words, the spectra obtained from most measurements of wind-wave ampli- 
tudes actually may be representative of energy in the bound-wave components of 
the dominant wave, even a t  high frequencies. 

The physical existence of the high frequency free waves can be detected, however, 
by high resolution slope gauges or microwave radars, as shown in the example of 
figure 15. The measurements shown in figure 15 were made by Chang & Wagner (1976) 
using a high resolution (0.2mm spatial resolution) laser slope gauge in a wind-wave 
tank ; (a) shows the measured slope at a point as a function of time, and ( b )  shows an 
integrated slope signal, which has been found to be in good agreement with direct 
measurements of wave amplitude for such wave conditions. The integrated slope 
output is typical of amplitude measurements of wind waves in that it shows effectively 
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only the dominant wave which contains essentially all of the wave energy. Measure- 
ments of the short free waves which exist on the dominant wind wave have also been 
made by Lee (1 977), who used microwave radar Doppler spectra to measure the short- 
wave speeds. He found the speeds to be equal to the appropriate free-wave phase 
speed plus contributions from the wind-drift current and the dominant-wave orbital 
velocity. 

Since the properties of the short free waves can be strongly affected by the long 
dominant wind wave on which they exist, they can be important sources of information 
regarding the characteristics of the dominant wind-wave system. The distribution of 
short waves along the dominant wave is not uniform or random. Under conditions of 
steady wind blowing in one direction, the distribution of the short waves is correlated 
to a large extent with the phase of the dominant wave, even though they are not 
bound-wave components of it. Some evidence that this is true, at  least under labora- 
tory conditions, is already available. The measurements of both Chang & Wagner 
(1 976, as shown in figure 15) and Lee (1  977) show that the short free waves are located 
primarily in the vicinity of the crest and on the front face of the dominant wave. The 
dominant wave also affects the speeds and frequencies of the short free waves. The 
microwave measurements of Lee (1 977) have already demonstrated this effect by 
showing that when short waves exist on a long wave, the net short-wave speed in- 
cludes a contribution from the orbital velocity of the long wave, and that this con- 
tribution can be surprisingly large because there is a preferred location for the short 
waves on the long wave. 

3.2. Nonlinear wind waves in the ocean 

This description of wind-wave characteristics requires that the wave system have a 
recognizably coherent dominant or carrier wave propagating predominantly in one 
direction, and that the dominant wave have sufficient steepness for the wave system 
to be governed by nonlinear self-interactions such as occur in nonlinear wave trains. 
The measurements of zero-crossing frequencies, phase speeds of spectral components, 
and group velocities indicate that wind waves in laboratory facilities (for 10 ft/s < 
u, < 30 ft/s in our experiments) meet the requirements for application of our 
model for nonlinear wind waves. 

The obvious next question to ask is whether this nonlinear model is appropriate toany 
of the waves found on the ocean and, if so, whether it applies only occasionally (in 
time and space) or whether it is the t-ypical or even the predominant situation. While 
we do not believe that this question can be reliably answered in any quantitative 
fashion a t  this time, and our own work is limited to theoretical and laboratory experi- 
mental investigations, we have given the question some preliminary consideration. 

If we restrict consideration to special cases where conditions are such that the 
wind and the waves are steady and moving in one direction, the following observations 
can be made. In  the case of actively developing wind-wave systems (in either the 
fetch-limited or duration-limited sense), our description should apply to at least 
those wind-wave conditions where the dominant-wave speed is considerably lower 
than the wind speed, inasmuch as these are the conditions that exist in laboratory 
facilities. For consideration of other wind-wave conditions, it  is necessary to examine 
the expected hydrodynamic characteristics of the wind waves, in particular, whether 
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FIGURE 10. Values of dominant wave steepness &, obtained from field measurements of average 
periods and amplitudes of dominant waves. Data from Groen & Dorrestein (1958) and Pierson, 
Neumann & James (1956). u, = 10, 15, 20 m/s; 0.5 6 duration 6 12 h. 

there is a one-directional dominant wave which exhibits coherence and whether the 
average steepness, or &a, of the dominant wave is sufficiently large. Examination of 
data from oceanic wind-wave measurements reveals that dominant waves with 
notable coherence have been observed, and that in some cases tabulations of average 
periods and amplitudes of the dominant waves are available. In  the laboratory we 
find that a wave train behaves as a nonlinear bound-wave system when the average 
ka exceeds about 0.1 (Lake, Yuen, Rungaldier & Ferguson 1977), whether or not 
there is wind present. On this basis we find, from a preliminary examination of ocean 
wave data, that relatively well-developed wind-wave systems which are still growing, 
but which correspond to conditions where the dominant-wave speed and the wind 
speed are becoming comparable (wind-wave conditions not realizable in laboratory 
facilities), also appear to be consistent with our nonlinear model. For example, data 
from Pierson, Neumann & James (1955) for dominant-wave amplitudes and periods 
in a 20 knot wind a t  durations of 4, 6,8 and 12 h show &a = 0-14-0.155 in all cases. 
Also, an extensive survey of datat on oceanic wind waves by Groen & Dorrestein 
(1958), as quoted by Stewart (1961), shows that for a wide range of conditions 
(10m/s < u, < 20m/s and durations of from 0.5h to 12.0h) the values of Ei i  
were between 0.14 and 0.18. These data are shown in figure 16. If one makes the 
admittedly strong assumption that these dominant waves propagate in one direction, 
in addition to being under steady wind and steep as indicated by the measurements 
of wave amplitudes and periods used in figure 16: they would appear to be of a type 
describable by nonlinear wave properties. 

t Stewart (1961) states that the compilation by Groen & Dorrestein (1958) ' used virtually 
all the data on wind-waves published prior to 1957 to obtain average wave characteristics as a 
function of wind duration and speed '. 
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It should be noted that the conditions which are sufficient to indicate that the wave 
systems are as described by our model are strictly hydrodynamic. It appears to US 

that as long as these hydrodynamic conditions of existence of a one-directional 
coherent dominant wave with Zii 2 0-1 are met, the wave system will behave as 
a nonlinear bound-wave system regardless of wind speed or wave age. (Eventually, 
however, the reduction or absence of wind energy input and the continued action of 
dissipation would lead to a wind-wave system that would no longer be sufficiently 
nonlinear to behave as a bound-wave system.) On the other hand, we recognize that 
conditions characterized by existence of a steep one-directional coherent dominant 
wave are not necessarily typical of wave conditions on the ocean surface and that under 
many circumstances the ocean state may be too linear (i.e. waves too flat, Zii < 0-l) ,  
or too multi-dimensional, or too multi-sourced for this nonlinear model to apply. We 
do feel, however, that under certain conditions the properties of ocean waves may be 
characterized more by the nonlinearity of the dominact wave than by a superposition 
of essentially independent linear wave components. Even in cases where waves are 
too multi-dimensional or multi-sourced for our one-dimensional nonlinear model to 
apply, we believe that the possible application of two or more interacting nonlinear 
dominant-wave systems may be appropriate when constructing models for the dyna- 
mics of such systems and that consideration need not therefore be limited solely to 
models based on superposition of many dispersive free-wave components. 

We also recognize that this brief discussion of the possible application of this 
nonlinear model to the description of properties of wind waves on the ocean is pre- 
liminary and incomplete. Continued examination of oceanic wave data, as well as 
perhaps the performance of some new field measurements to test for bound-wave 
characteristics, is necessary in order to assess fully the applicability of this nonlinear 
wind-wave model to oceanic wind waves. 

4. Conclusions and discussion 
A model for a nonlinearity-dominated wind-wave system has been proposed. 

Results of laboratory experimental investigations of nonlinear wave trains and wind 
waves have been examined and found to provide evidence supporting the proposed 
physical model. The following is a review of conclusions which we believe can be 
drawn at  this time regarding the hydrodynamic characteristics of nonlinear wind 
waves and a brief discussion of possible further applications of the wind-wave model. 

For developing wind waves with steady wind and waves in one direction, we find 
that: 

(i) The spectral components of a nonlinearity-dominated wind-wave system are 
effectively non-dispersive Fourier components bound to the dominant wave and are 
not a random collection of free waves each obeying the usual dispersion relation. 

(ii) A t  a fixed fetch, the observed properties of nonlinear wind-driven waves strongly 
support an,interpretation of the waves as a coherent bound-wave system char- 
acterized by a single dominant frequency (which may vary slowly in time within a 
narrow frequency range), propagating energy at a single speed, and characterized by 
nonlinear self-interactions of the type found in strongly amplitude-modulated 
nonlinear wave trains. 
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(iii) The bound-wave nature of such a nonlinear wind-wave system implies that the 
dominant wave alone receives almost all of the energy input from the wind. Changes 
in the bound frequency components merely reflect changes in the dominant wave form, 
and should not be identified as changes induced by direct wind energy input to those 
components. 

(iv) The evolution of a nonlinear wind-wave system to progressively lower dominant 
wavenumber and frequency, aa the system gains energy from the wind, is a consequence 
of hydrodynamic self-interaction and a limiting wave steepness condition for deep- 
water gravity waves. The hydrodynamic interaction which produces the frequency/ 
wavenumber shift has been observed in ‘over-modulated ’ nonlinear wave trains (i.e. 
without wind) and measured in detail. For wave trains the interaction occurs among 
components having frequency separation Af = E&f, and the magnitude of the decrease 
in carrier frequency during one frequency shift interaction is also Af. Although the 
wave-train measurements clearly demonstrate that this self-interaction produces a 
true change in carrier frequency, the interaction has not been predicted by existing 
theories for wave-train interactions. We believe that the interaction as it has been 
identified in the wave-train case suggests an essential interaction process by which 
the dominant wave in a nonlinear wind-wave system evolves to lower frequency and 
wavenumber as it gains energy from the wind. 

(v) The process of wind-wave evolution, as modelled in terms of a dominant non- 
linear wave train which continually gains energy, approaches limiting steepness, shifts 
to lower frequency, and gains still more energy, etc. is consistent with the proposition 
that the dominant wave steepness &a is approximately constant 8.8 a function of fetch 
or duration for fixed wind speed and u,/C 1 in an actively growing wind-wave 
system. This constant steepness condition is also consistent with measurements of 
dominant wave steepness in such systems and can be used to predict the evolution 
of t.he dominant wave frequency with fetch or duration as a nonlinear wind-wave 
system gains wave energy or amplitude from the wind. The condition of constant 
dominant wave steepness is equivalent to an Ga/f cc f-6 relationship between the 
magnitudes of successive spectral peaks in a series of spectra for evolving nonlinear 
wind waves. 

(vi) The bound-wave components of the dominant wave in a nonlinear wind-wave 
system contain essentially a11 of the wave energy, but the wind-wave system also 
includes high-frequency free waves (which obey the dispersion relation) that are 
locally generated by wind or wave breaking and that exist along the surface of the 
dominant wave. Although they contain a negligible fraction of the total energy in the 
wind-wave system, the short free waves are important in that they are likely to be 
strongly affected by, and strongly coupled to, the characteristics of the dominant 
wave on which they exist. 

(vii) Wind waves generated in laboratory facilities are coherent nonlinear bound- 
wave systems of the type described by our model. This model is also expected to 
apply to oceanic wind waves when the waves can be characterized hydrodynamically 
as having a one-directional coherent dominant wave with an average steepness 
greater than about 0.1. A preliminary examination of oceanic wave data indicates 
that the application of the model may not necessarily be limited simply to wind-wave 
systems with short fetch or duration. On the other hand, under many circumstances 
the ocean state may be too linear (too flat, c O e l ) ,  too multi-directional, or too 
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multi-sourced for this model to apply. Continued examination of oceanic wave data 
is required in order to assess in full the applicability of this nonlinear wind-wave 
model to oceanic wind waves. 

(viii) When wind waves are nonlinear in the sense of this model, the statistical 
properties of the wave modulations, as measured by the wave envelopes, should be 
related to the statistical properties of the dominant waves in the same way that 
modulational and carrier-wave properties are related in the case of nonlinear wave 
trains. These results suggest that greater attention should be given to modulational 
characteristics in future analyses of wind-wave measurements. 

(ix) Although there is evidence that in the sense of average properties (such as 
relative levels of harmonic components in spectra), nonlinear wind waves may have 
Stokes-wave-like properties, detailed measurements of nonlinem wave trains and 
wind waves show that because these wave systems are necessarily highly modulated 
the waves are far too unsteady to be well modelled, either individually or in groups, 
using detailed properties of Stokes waves. Our investigations of nonlinear wave 
trains and wind waves indicate to us that the most appropriate model for such systems 
is one which describes the system in terms of the dynamics of the dominant-wave 
envelope using the nonlinear Schrodinger equation as a basis. In  order to identify 
properties of individual carrier waves correctly, an envelope solution and an analysis 
of unsteady deep-water gravity waves are required. 

(x) As a first step toward exploiting this new interpretation theoretically, a first- 
order theory for the evolution of nonlinear wind waves has been proposed by Yuen 
& Lake (1976). Since the rate of input of wind energy into the waves is slow compared 
with the rate of modulation caused by self-nonlinearity, the wind-wave field is char- 
acterized as an adiabatic system consisting of a nonlinear wave train with a slowly- 
varying carrier frequency. The adiabatic nature of the wave field strongly favours the 
use of a wind-wave energy input model which ‘tracks’ the frequency change of the 
dominant wave, as opposed to the fixed mode approach of Miles (1967, 19690, b, 
1960, 1964) and Phillips (1957, 1958b). The first-order theoretical model of Yuen & 
Lake (1 976) employs the nonlinear Schrodinger equation for the wave envelope, 
supplemented by an equation describing the change of dominant-wave frequency (or 
wavenumber) with fetch (or duration). The latter equation is a consequence of a form 
drag model proposed by Deardodl (1967) for the input of energy into the dominant 
wave, which in turn implies that the wave drag coefficient can be assumed to be a 
function of averaged dominant-wave slope only and that the averaged dominant-wave 
slope is constant during a significant portion of the wave growth. 

(xi) Although the results presented here are limited to one-dimensional wave-train 
and wind-wave systems, there is evidence that the basic physical properties of these 
nonlinear wave systems are relevant to two-dimensional systems as well. The evolu- 
tion of nonlinear wave trains in two space dimensions has been studied by Zakharov 
(1 968), who derived the appropriate two-space-dimensional nonlinear Schrodinger 
equation for the complex wave envelope, Zakharov (1968), Zakharov & Rubenchik 
(1974), and Saffman & Yuen (1978) used the equation to study stability 
properties of nonlinear wave trains in two space dimensions. The results of those 
investigations, together with numerical solutions of the equation obtained by Yuen 
& Ferguson (1979), indicate that even though the structure of the solutions is far 
more complicated than in the one-space-dimensional case, the most important features 
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of a nonlinear wave train, namely, modulational instability, Fermi-Pasta-Ulam 
recurrence and coherence, are still present in two space dimensions. The application 
of these results to the formulation of a first-order nonlinear wind-wave model in two 
dimensions is considered in Yuen & Lake (1 979). 

(xii) One important feature of our proposed model for nonlinear wind waves is that 
the effects of nonlinearity on the dynamics of the wave system are predominant over 
the effects of randomness. This property has allowed us to propose a deterministic 
system for the description of the physical mechanisms associated with the dominant 
waves. To obtain information concerning the statistical properties of nonlinear wind- 
wave systems, we are presently examining the properties of random phase solutions 
of the nonlinear Schrodinger equation. A first step along this line of investigation has 
been taken by Alber & Saffman (1977) and Crawford, Saffman & Yuen (1977)) who 
have examined the stability of random phase nonlinear wave trains with particular 
statistical distributions. 
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